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Abstract. The utility of lattice discretization technique is demonstrated for solving
nonrelativistic quantum scattering problems and specially for the treatment of ultraviolet
divergences in these problems with some potentials singular at the origin in two- and three-
space dimensions. This shows that the lattice discretization technique could be a useful tool for
the numerical solution of scattering problems in general. The approach is illustrated in the case
of the Dirac delta function potential.

The technique of discretization on lattice (hereafter called lattice technique) [1–3] has been
successfully used to deal with ultraviolet divergences in gauge field theoretic problems in
perturbative expansion, specially those in quantum electrodynamics (QED) and quantum
chromodynamics (QCD). These ultraviolet divergences in perturbative quantum field theory
can be eliminated by lattice technique to yield a scale. Except in some simple cases the
lattice-regularized perturbative series cannot be summed up and this makes it difficult to
draw conclusions about the full solution. The renormalization group (RG) (4), (5), on the
other hand, yield many general properties of the full solution from the lattice-regularized
results of the perturbative expansion.

The lattice technique represents a mathematical trick, which removes the ultraviolet
divergences by introducing a cut-off in a regularized Green function. As with any regulator,
it is removed after renormalization. The physical observables are then obtained in the
continuum limit, where the lattice spacing is taken to be zero.

Ultraviolet divergences also appear in the nonrelativistic quantum scattering problems
for potentials with certain singular behaviour at short distances [6–9] in two and three
dimensions. In one dimension these divergences are absent. We show that the application of
the lattice technique to these potential models leads to a scale and finite physical observables
after the continuum limit is taken by the usual renormalization procedure.

The present work is written in a pedagogic style so that it clarifies all the subtleties of
lattice technique in a simple nonrelativistic problem and should serve as an introduction to
the study of lattice technique in a complicated field theoretic problem.

Recently, there have been discussions on renormalization in configuration [8] and
momentum [6, 7, 9] spaces for potential scattering with the Dirac delta, contact, or zero-
range potential. In this paper the lattice technique is used for potential scattering with delta
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potential in two and three dimensions. In both cases there are ultraviolet divergences. In
the two-dimensional case the divergence is logarithmic in nature, whereas in the three-
dimensional case it is linear. The lattice-regularized result is finally renormalized and the
RG equation written.

The present potential scattering problem permits analytic solution and is infinitely
simpler than gauge field theories of QED and QCD where the lattice technique is usually
applied. Hence the present study will allow us to understand the subtleties of this approach.
In gauge field theories particles can be spontaneously created and destroyed and the
discretization is done in the four-dimensional Euclidean space. In potential scattering the
particle number is conserved and we directly discretize the time-independent Schrödinger
equation for relative motion in three-dimensional Euclidean space.

The present analytic investigation with delta potential shows the subtleties of the lattice
technique and demonstrates that this approach can be used for a numerical solution of
nonrelativistic quantum scattering problems in general, not only for two particles but for
several particles. In this analytic study we calculate the nonrelativistic Green function and
the t matrix on the lattice. The numerical study remains one to be attempted in the future.

There is another interest to study, the nonrelativistic scattering with delta potential in two
dimensions. This problem can be considered to be a good model of the ultraviolet structure
and high energy behaviour ofλφ4 field theory [5, 8, 9]. Both problems have ultraviolet
logarithmic divergences, require regularization, are perturbatively renormalizable, collapse
for attractive interaction but are asymptotically free, etc.

We discussS-wave potential scattering with the delta potential. The partial-wave
Lippmann–Schwinger equation for the scattering amplitudeT (p, q, k2) in D dimensions
at c.m. energyk2 is given by

T (p′, p, k2) = V (p′, p) +
∫

dDq V (p′, q)G(q; k2)T (q, p, k2) (1)

with the free Green functionG(q; k2) = (k2 − q2 + i0)−1, in units h̄ = 2m = 1, wherem is
the reduced mass. The integral in (1) is over the relevantS-wave phase space, e.g. we take
d3q ≡ 4πq2 dq and d2q ≡ 2πq dq with q varying from 0 to∞. For the delta potential
V (p′, p) = λ, and

T (p′, p, k2) = [λ−1 − I (k)]−1 (2)

with I (k) = ∫
dDq G(q; k2). The integralI (k) possesses ultraviolet divergence forD > 1.

For D = 3(2) this divergence is linear (logarithmic) in nature. Finite result for thet

matrix of (2) can be obtained only ifλ−1 also diverges in a similar fashion and cancels the
divergence ofI (k).

The solution of the problem can be achieved by discretizing the full Schrödinger equation
on lattice and finding its solution numerically. Instead, as this problem permits analytic
solution, we discretize the free Schrödinger equation on lattice and evaluate the lattice-
regularized free Green function. With the lattice-regularized Green function the ultraviolet
divergences are avoided. In contrast to the lattice discretization of gauge field theories,
where one works in terms of Lagrangian densities and path integrals [2, 3], in the present
problem it is convenient to work in terms of the following time-independent Schrödinger
equation for relative motion

∇2
rφ(r) + k2φ(r) = 0 (3)

where the space vectorr ≡ (xj ), j = 1, . . . ,D. The present mathematical treatment is
much simpler than, but similar to, that in field theory [2]. For our purpose we consider
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the D-dimensional lattice of spacinga. The transition from the continuum to the discrete
lattice is then effected by making the following substitutions [1, 2]

xj → na ≡ nja j = 1, . . . ,D
φ(r) → φn ≡ φ(na)

∇2
rφ(r) → a−2

D∑
j=1

[φ(na + ̂a) + φ(na − ̂a) − 2φ(na)].

Here the space coordinate is discretized byr = na and ̂ is the unit vector in direction
j . The individual componentnj assumes only a finite numberN of independent values.
Outside this range the lattice is assumed to be periodic, so that thenth site can be identified
with the (n + N)th site. The active part of the lattice hasND sites.

After discretization, the Schrödinger (3) becomes the matrix equation∑
m

Knmφm = 0 (4)

where

Knm = a−2
D∑

j=1

[δn+̂,m + δn−̂,m + (a2k2
j − 2)δn,m]. (5)

Comparing (3) and (4) we realize thatKnm is the discretized version of the operator
(∇2

r + k2). Hence, the free Green function is the inverse of this operator, defined by∑
m

Knm(K−1)ml = δnl. (6)

This inverse operator can be evaluated analytically by working in momentum space where
the D-dimensional Kr̈onekerδ functions are represented as

δnm =
( D∏

l=1

∫ π

−π

dq̃l

(2π)3

)
eiq̃·(n−m) (7)

where q̃ is a dimensionless wave number defined byq̃ = aq with componentsq̃j . The
integration is restricted to the first Brillouin zone−π 6 q̃l 6 π . In the continuum limit
one has the following relations for the phase spaces∫

dDq ≡ lim
a→0

( D∏
l

1

aD

∫ π

−π

dq̃l

(2π)3

)

= lim
a→0

( D∏
l

∫ π/a

−π/a

dql

(2π)3

)
. (8)

Using the Fourier representation (7), the matrixK can be written as

Knm = a−2

( D∏
l=1

∫ π

−π

dq̃l

(2π)3

)
eiq̃·(n−m)

D∑
j=1

[
eiq̃·̂ + e−iq̃·̂ + (a2k2

j − 2)

]

= a−2

( D∏
l=1

∫ π

−π

dq̃l

(2π)3

)
eiq̃·(n−m)

[
(a2k2 − 2D) +

D∑
j=1

2 cosq̃j

]
. (9)

The inverse of the matrixK is now determined by

(K−1)nm = a2

( D∏
l=1

∫ π

−π

dq̃l

(2π)3

)
eiq̃·(n−m)

[
(a2k2 − 2D) +

D∑
j=1

2 cosq̃j

]−1

. (10)
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This result leads to the following lattice-regularized outgoing-wave Green function

GR(q, a; k2) = a2

[
(a2k2 − 2D) +

D∑
j=1

2 cosq̃j + i0

]−1

. (11)

With this Green function there is no ultraviolet divergence fora 6= 0. The imaginary part of
this Green function guarantees unitarity for outgoing-wave scattering. In the limita → 0,
the regularized Green function reduces to the free Green function: lima→0 GR(q, a; k2) =
G(q; k2).

Using the lattice-regularized Green function (11), thet matrix (2) can be rewritten as

T (k, λ(a), a) = [λ−1(a) − IR(k, a)]−1 (12)

where

IR(k, a) ≡
∫

dDq GR(q, a; k2)

= a(2−D)

( D∏
l=1

∫ π

−π

dq̃l

(2π)3

)[
(a2k2 − 2D) +

D∑
j=1

2 cosq̃j + i0

]−1

(13)

is a convergent integral for a finite lattice spacinga. In (12) the redundant momentum
labelsp, p′ of the t matrix have been suppressed, and the explicit dependences of thet

matrix ona andλ(a) have been introduced. Asa → 0, however, this integral develops the
original ultraviolet divergence. Explicitly,

lim
a→0

IR(k, a) = −[c/a + 2π2ik] D = 3 (14)

lim
a→0

IR(k, a) = 2π ln(ak) − iπ2 D = 2 (15)

where

c ≡
( D∏

l=1

∫ π

−π

dq̃l

(2π)3

)[
6 −

3∑
j=1

2 cosq̃j

]−1

(16)

is a real finite definite integral.
Finite results for physical magnitudes, asa → 0, are obtained from (12) if the coupling

λ is also replaced by the so-called bare couplingλ(a) as in this equation. The bare coupling
can, for example, be defined by

λ−1(a) = −[c/a + 2π230] D = 3 (17)

= 2π [ln(a30)] D = 2 (18)

where 30 is the physical scale of the problem and characterizes the strength of the
interaction. The quantitiesλ−1(a) of (17) and (18) have the appropriate divergent behaviour,
asa → 0, and cancel the divergent part ofIR(k, a) in (12).

Regarding the lattice merely as an ultraviolet regulator or cut-off (lattice spacinga),
finally, we must take the continuum limit:a → 0. For the present delta potential this limit
can be taken analytically. In a general problem the limit has to be taken numerically. Both
ways are illustrated below. After this limit is taken the observables should approach their
physical values. The question of renormalization is intimately related to the removal of the
regulator and prediction of physical observables.

Next thea → 0 limit is taken analytically in (12) and then we turn to the question
of renormalization. With the present regularization procedure one has for the lattice-
renormalizedt matrix

TR(k, λR(A), A) = [λ−1
R (A) − IR(k, A)]−1 (19)
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with

IR(k, A) = lim
a→0

[IR(k, a) − IR(i/A, a)] (20)

λ−1
R (A) = lim

a→0
[λ−1(a) − IR(i/A, a)] (21)

where A is the lattice-renormalization scale of the problem. This scaleA should be
contrasted with the physical scale30 of (17) and (18). In (19) the explicit dependence
of the t matrix on bothA and the lattice-renormalized couplingλR(A) has been exhibited.

After taking thea → 0 limit in (20) and using (8), the following lattice-renormalized
function is obtained

IR(k, A) = lim
a→0

a(2−D)

( D∏
l=1

∫ π

−π

dq̃l

(2π)3

)
× −a2(A−2 + k2)

[a2k2 − 2D + ∑D
j=1 2 cosq̃j + i0][−a2/A2 − 2D + ∑D

j=1 2 cosq̃j ]

=
∫

dDq
A−2 + k2

(k2 − q2 + i0)(A−2 + q2)
. (22)

Consequently,

IR(k, A) = −2π2(ik + 1/A) D = 3 (23)

IR(k, A) = 2π ln(kA) − iπ2 D = 2. (24)

In (21), if integralsIR are evaluated and the trivial limita → 0 taken, we get

λR(A) = −[2π2/A + 2π230]−1 D = 3 (25)

= [2π ln(A30)]
−1 D = 2. (26)

The lattice-renormalized coupling for two scalesA andA0 are related by the flow equations:

λ−1
R (A) + 2π2/A = λ−1

R (A0) + 2π2/A0 (27)

λ−1
R (A) − 2π ln A = λ−1

R (A0) − 2π ln A0 (28)

for D = 3 and 2, respectively. The flow equations are independent of the renormalization
scheme.

The present scattering model permits analytic solutions and forD = 3 and 2 the exact
lattice-renormalizedt matrices of (19) are given, respectively, by

TR(k, λR(A), A) = [λ−1
R (A) + 2π2(1/A + ik)]−1 (29)

= [λ−1
R (A) − 2π ln(kA) + iπ2]−1. (30)

Explicitly, using definitions (25) and (26) for the renormalized coupling, these lattice-
renormalizedt matrices can be written as

TR(k, λR(A), A) = [2π2(ik − 30)]
−1 D = 3 (31)

= [−2π ln(k/30) + iπ2]−1 D = 2. (32)

Theset matrices depend onλR(A), but not onA, that is the explicit and implicit (through
λR(A)) dependences of thet matrix on A cancel. Physics is determined by the value of
λR(A) at an arbitrary value ofA [8]. For D =3, the physical scale30 is related to the
scattering lengtha0 by a0 = −1/30. For D = 2, 30 can also be related to the scattering
length [10].

Next we write the RG equation for this problem and show how the limita → 0 can
be taken numerically. In this limit the lattice-renormalizedt matrix is independent ofa,
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so is invariant under the group of transformationsa → exp(s)a, which form the RG. It is
convenient to work in terms of the dimensionless coupling,g(a), defined by

g(a) ≡ cλ(a)/a D = 3 (33)

≡ 2πλ(a) D = 2. (34)

The renormalization condition in thea → 0 limit can be expressed as [1]

a
d

da
T (k, g(a), a) = 0 (35)

or, [
a

∂

∂a
+ β(g)

∂

∂g

]
T (k, g(a), a) = 0 (36)

where the RG functionβ(g) is defined by

β(g) = a
∂g(a)

∂a
. (37)

Equation (36) is the RG equation. As the present problem permits an analytic solution, the
constantβ(g) of (37) can be exactly calculated.

For bothD = 3 and 2,β(g) is a finite quantity independent ofa. For D = 3, from
(17), (33) and (37) we haveβ(g) = −g − g2. Similarly, for D = 2, from (18), (34), and
(37) we haveβ(g) = −g2.

One has the following Taylor series relating the solution for a small finitea, and that
for a → 0:

T (k, a) = T (k, 0) + a2

2!
T ′′(k, 0) + a3

3!
T ′′′(k, 0) . . .

where prime(s) denote the derivative with respect toa at a = 0. Here the linear term ina
does not contribute, as the RG (35) yieldsT ′(k, 0) = 0. Though the first-order derivative
is zero by the RG equation, the higher-order derivatives are not zero. Then the converged,
a → 0, result is given, approximately, by

T (k, 0) ≈ T (k, a) − a2

2!
T ′′(k, a) − a3

3!
T ′′′(k, a) . . . (38)

where the derivatives are to be calculated for a small finitea. For evaluatingT ′′ (T ′′′)
numerically one needsT (k, a) for three (four) adjacent values ofa. As more terms are
maintained in (38) a more convergeda → 0 limit is obtained.

In summary, we have used the lattice technique for solving the nonrelativistic quantum
scattering problem with delta potential in two and three dimensions. This technique leads
to a lattice-regularized Green function. The finite physical result is obtained by employing
standard renormalization procedures with this regularized Green function as the continuum
limit is taken. The RG equation is written for this problem. Lattice technique and
RG equation should be valid for general nonrelativistic potential models with ultraviolet
divergence. Though we have illustrated the lattice technique for scattering problems with
ultraviolet divergences, it should be applicable to any scattering problem. In fact, the present
study strongly suggests that, as in QED and QCD, with the use of modern computers the
lattice technique should be a powerful alternative tool for the numerical solution of general
nonrelativistic few- and many-body problems, where, unlike in the present delta potential
problems, analytic solutions cannot be formulated.
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